B.Sc 6th Semester (Honours) Examination, 2022 (CBCS) Subject: Chemistry (Physical Chemistry-IV)

Paper: CC-14

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions from the following: $2 \ge 5 = 10$

(a) Show graphically the variation of molar conductivity and surface tension with concentration for SDS solution with proper reason.

(b) The separation between the rotational lines in the spectrum of ${}^{13}C^{16}O$ will be smaller than that of ${}^{12}C^{16}O$ – Justify.

(c) In the pure microwave spectrum of XY molecule, the adjacent lines are separated by 4cm^{-1} . If the molecule is irradiated by a radiation of 30,000 cm⁻¹, find the position of first stokes line.

(d) Addition of 5.0 ml of 0.006M BaCl₂ to 10 ml of arsenic sulphide sol just causes the complete coagulation. Calculate the flocculation value of the effective ion.

(e) The meniscus of Hg in a glass tube is convex upward - Explain

(f) The signal for CH_2 protons in a compound appears at δ 4.6. Calculate the difference in frequency expressed in Hertz between this signal and TMS signal in a 300 MHz instrument.

(g) At 460 nm a blue filter transmits 72.7% of the light and a yellow filter 40.7 % of the light. What is the transmittance value at the same wavelength, of two filters in combination?

(h)Why do electrolytes increase the surface tension of liquid? – Elucidate in the light of Gibbs adsorption isotherm.

2. Answer *any two* questions from the following: $5 \ge 2 = 10$

(a) (i) The symmetric stretching mode of vibration of CO_2 is Raman active but IR inactive – Justify.

(ii) The limbs of vertical U-tube have internal diameters of 1mm and 2 mm respectively. It is partially filled with a liquid of density 0.82g/ml and surface tension 50 dyne/cm. What is the difference in level of the liquid in the two limbs? 2+3=5

(b) (i) For a diatomic molecule with B = 0.35 cm⁻¹, find the quantum level from which the most intense spectral line will originate at 1000 K.

(ii) Phosphorescence has a long radiative lifetime and it occurs at a longer wavelength than fluorescence – Justify. 2.5 + 2.5 = 5

(c) (i) Show the transitions leading to absorption and fluorescence schematically using potential energy diagram and hence show that λ_{max} (abs) $< \lambda_{max}$ (fluorescence).

(ii) During micellization of surfactant in aqueous medium entropy increases – Explain. 3+2=5 (d) (i) Show that at low pressure (P < P^o) BET isotherm reduces to Langmuir's adsorption isotherm.

(ii) Electro-Osmosis is a consequence of existence of electrical double layer at the solid-liquid interface – Justify the statement. 2.5 + 2.5 = 5

3. Answer *any two* questions from the following: $10 \ge 2 = 20$

(a) (i) The molecular dissociation energy is defined at a state where the vibrational energy of the diatomic molecule has its maximum value. Show that $D_{dis} = \frac{hv}{4x_e}$ where the symbols used have their usual significance.

(ii) 52.48 ml of the quartz container was filled up with CH_3COCH_3 vapour at 47 °C at 780 mm of Hg. The vapour was irradiated with radiation of wavelength 300 nm and intensity 2.1×10^{18} photons s⁻¹ for 30 minutes. Find out the increase in pressure (given, quantum yield = 0.1 and the dissociation reaction is $CH_3COCH_3 \longrightarrow C_2H_6 + CO$, and assuming ideal behavior of vapour)

(iii) Show the splitting pattern in high resolution of ¹H NMR spectrum of acetaldehyde molecule with explanation.

(iv) Calculate the resonance frequency of ¹⁹F nucleus in an NMR spectrometer operating at a magnetic field strength of 16.45 T [given, g factor of ¹⁹F = 5.255, $\beta_N = 5.05 \times 10^{-27} \text{J T}^{-1}$]

3+3+2+2=10

(b) At 18 °C, the surface tension γ of an aqueous solution of butyric acid is represented by the equation $\gamma = \gamma_0 - 29.8 \log (19.64 C_2 + 1)$ where γ_0 , the surface tension of water is 0.073 Nm⁻¹ and C₂ is the bulk concentration of the solute. Calculate, using Gibbs adsorption isotherm, the surface excess of butyric acid at concentration C₂ = 0.01 mol dm⁻³.

(ii) Derive the expression for the transition frequency of stokes and antistokes lines for a linear molecule by considering only rotational energy.

(iii) Mention differences between Oil in water emulsion and Water in oil emulsion. Justify the condition of spreading of one liquid over another. 3+3+(2+2)=10

(c) (i) A quartz particle of diameter 1×10^{-4} cm in aqueous suspension at 25°C migrates at a velocity of 3×10^{-8} cm/sec under potential gradient of 10 V/cm. Calculate zeta-potential at the quartz water interface (η of water = 0.89 centipoise, dielectric constant of water = 78.3).

(ii) For dimerization of anthracene $2A \longrightarrow A_2$, explain with sketch the change of fluorescence yield (ψ) and quantum yield (ϕ) of the process with concentration of anthracene.

(iii) The photolysis of ozone follows (a) $O_3 \xrightarrow{hv(I_{abs})} O_2 + O$, (b) $O + O_3 \xrightarrow{k_2} 2O_2$, the quantum yield of reaction (a) is φ_1 , find an expression for the overall quantum yield (φ_0) of disappearance of O_3 .

(iv) What is the criterion of a molecule to be NMR active. The rotational raman displacement for HCl molecule is 41.6 cm⁻¹. Calculate the internuclear distance between the atoms in angstrom. (reduced mass for HCl is 1.61 x 10^{-27} kg) 3+2+2+(1+2)=10

(d) (i) Show that the frequency of rotation of a rigid rotator increases with increase in rotational quantum number (J) by the relation $\nu = \frac{h}{4\pi^2 I} \sqrt{J(J+1)}$

(ii) Derive Langmuir Adsorption Isotherm mentioning all the assumptions involved in it.

(iii) When sufficient solution of $BaCl_2$ is added to an arsenious sulphide solution, peptized by a small amount of H_2S , flocculation occurs and the solution becomes acidic – Explain.

(iv) The fundamental vibrational frequency of ${}^{1}\text{H}^{127}\text{I}$ is 2309 cm⁻¹. Calculate the force constant for this molecule in Nm⁻¹ 2+4+2+2=10